
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Tribocharging of macerals with various materials: Role of surface oxygen-containing groups and potential difference of macerals
Triboelectrostatic separation of vitrinite and inertinite depends on their differences in tribocharging behavior. In the present study, charge-to-mass ratios of two macerals with six tribocharging materials, i.e., aluminum, stainless steel, copper, polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyamide (PA) were conducted for the first time under various environmental factors. PA was found to be the preferred material for tribocharging because vitrinite and inertinite displayed opposite charge polarity with it. Characterization of surface oxygen-containing groups on macerals and their quantitative estimation were conducted by X-ray photoelectron spectroscopy (XPS) technique. Polar groups such as OH and COOH were detected to be the major proportion in inertinite whereas vitrinite exhibited mainly nonpolar groups of O, which indicate tendency of their surface charge. For the first time, atomic force microscopy (AFM) was utilized to investigate the surface topography and potential difference of macerals. Inertinite showed 0.42?V higher surface potential than vitrinite, which well fits with their charge polarity and movement during triboelectrostatic separation. However, the instability of surface potential difference on inertinite may leads to disorder in its charge polarity, which makes Cu as an alternative material because both macerals have great charge gap with Cu and they also have same charge polarity.

» Author: Xin He, Hao Sun, Bin Zhao, Xiaowei Chen, Xinxi Zhang, Sridhar Komarneni
» Reference: 10.1016/j.fuel.2018.06.109
» Publication Date: 01/12/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
