AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Specific evaluation of tunnel lining multi-defects by all-refined GPR simulation method using hybrid algorithm of FETD and FDTD
Irregular and complicated tunnel lining defects cannot be finely depicted with the standard finite difference simulation method based on regular mesh due to its irregular geometrical characteristics and complex physical properties of various defects. To solve this problem, a new hybrid algorithm is proposed for all-refined ground penetrating radar (GPR) simulation by combining the finite element time domain (FETD) and finite difference time domain (FDTD), which employs FETD algorithm in main region based on unstructured Delaunay mesh and Newmark-? implicit FDTD algorithm in PML region based on convolutional perfectly matched layer (CPML), respectively. The calculation efficiency and simulation accuracy of different algorithms methods are compared in detail using a representative numerical model with a water-filled void embedded. In addition, several complicated numerical models involving different typical defects and mixed case (e.g. non-compactness, voids, leaking with fractured and cracks, etc.) are also conducted, the results presented show that the proposed hybrid algorithm helps GPR practitioners to gain a deeper insight into the effects of multi-defects on the propagation characteristic of electromagnetic wave, and provides more precise technical guidance for defect interpretation. Moreover, spectrum analysis of echoes responses from defects, by using the short-time Fourier transform (STFT), is also presented, including amplitude spectrum, frequency spectrum and mode of dominant frequency.
» Author: Deshan Feng, Xun Wang, Bin Zhang
» Reference: 10.1016/j.conbuildmat.2018.07.039
» Publication Date: 10/10/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es