
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Graphene intercalated Ni-SiO2/GO-Ni-foam catalyst with enhanced reactivity and heat-transfer for CO2 methanation
The fabrication of stable Ni active species over the high heat-transfer support is essential for the Ni-based catalysts in CO2 methanation to resist sintering and remove the reaction heat. A metal-structured Ni-SiO2/GO-Ni-foam catalyst was synthesized via intercalation of graphene oxide (GO) to facilitate the synthesis of stable nickel silicates on Ni-foam, which exhibited excellent activity and stability in the high-temperature (e.g., 470?°C) CO2 methanation. Characterization results suggested that the intercalated graphene over the Ni-foam contributed to a stronger metal-support interaction on the metal-structured catalyst due to the connective function of GO between the Ni-foam and nickel silicates. The formation of nickel silicates on GO lead to high dispersion of Ni sites and high amount of surface OH groups for elimination of carbon deposition. Density functional theory study revealed that the graphene modified the electronic structure of surface Ni, and contributed to an increase of CO2 adsorption energy, Ni4 binding energy with support, and a decrease of H2 and CO2 dissociation energy, and thus led to a high reactivity for CO2 methanation.

» Author: Haibin Ma, Kui Ma, Junyi Ji, Siyang Tang, Changjun Liu, Wei Jiang, Hairong Yue, Bin Liang
» Reference: 10.1016/j.ces.2018.05.019
» Publication Date: 10/05/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
