
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Optimization of cable pre-tension forces in long-span cable-stayed bridges considering the counterweight
Over the past 20?years, many long-span cable-stayed bridges with asymmetric spans have been constructed, and the counterweight is always used to balance the self-weight of the main span. This paper presents an optimization method to determine the cable pre-tension forces in long-span cable-stayed bridges considering the counterweight. This method includes: finite element (FE) model, formulation of the optimization problem and optimization algorithm. FE model is established considering the geometrical nonlinearity. The optimization problem is formulated with the objective of minimum weighted total bending energy. In addition, the constraints for the cable pre-tension forces, the bending moment of the girder and the tower, the load of the counterweight, the bearing reactions of the transition piers and auxiliary piers are all implemented in the optimization model. The optimization algorithm solves the optimization problem through the variable-step search along each design variable including the cable pre-tension forces, the load and the range of the counterweight. The efficiency and the accuracy of the proposed method are demonstrated by an application example and the results exhibit the importance of considering counterweight in the design of asymmetric cable-stayed bridges.

» Author: Chaolin Song, Rucheng Xiao, Bin Sun
» Reference: 10.1016/j.engstruct.2018.06.061
» Publication Date: 01/10/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
