
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Effect of solution plasma process with hydrogen peroxide on the degradation of water-soluble polysaccharide from Auricularia auricula. II: Solution conformation and antioxidant activities in vitro
Synergistic degradation of water-soluble Auricularia auricula polysaccharide (AAP) by solution plasma process (SPP) in the presence of hydrogen peroxide (H2O2) was investigated. The effects of H2O2 concentration, AAP concentration and the distance between the electrodes on the degradation of AAP were evaluated. The results showed that higher H2O2 concentration, lower AAP concentration and narrower distance between the electrodes were favorable for the degradation effect. Particle size, congo red (CR), scanning electron micrographs (SEM) and atomic force microscopy (AFM) results confirmed that SPP irradiation with H2O2 improved significantly the flexibility of the conformation. The degraded AAPs exhibited greater metal chelating effects and DPPH radical scavenging effect than the original AAP. It concluded that the combined SPP/ H2O2 method could be used for preparation of low-molecular-weight AAP.

» Author: Fengming Ma, Jingwei Wu, Pu Li, Dongbing Tao, Haitian Zhao, Baiqing Zhang, Bin Li
» Reference: 10.1016/j.carbpol.2018.06.113
» Publication Date: 15/10/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
