AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization
Macrophages are multifunctional immune cells with diverse physiological functions such as fighting against infection, influencing progression of pathologies, maintaining homeostasis, and regenerating tissues. Macrophages can be induced to adopt distinct polarized phenotypes, such as classically activated pro-inflammatory (M1) phenotypes or alternatively activated anti-inflammatory and pro-healing (M2), to execute diverse and dynamic immune functions. However, unbalanced polarizations of macrophage can lead to various pathologies, such as atherosclerosis, obesity, tumor, and asthma. Thus, the capability to remotely control macrophage phenotypes is important to the success of treating many pathological conditions involving macrophages. In this study, we developed an upconversion nanoparticle (UCNP)-based photoresponsive nanocarrier for near-infrared (NIR) light-mediated control of intracellular calcium levels to regulate macrophage polarization. UCNP was coated with mesoporous silica (UCNP@mSiO2), into which loaded calcium regulators that can either supply or deplete calcium ions. UCNP@mSiO2 was chemically modified through serial coupling of photocleavable linker and Arg-Gly-Asp (RGD) peptide-bearing molecular cap via cyclodextrin-adamantine host-guest complexation. The RGD-bearing cap functioned as the photolabile gating structure to control the release of calcium regulators and facilitated the cellular uptake of UCNP@mSiO2 nanocarrier. The upconverted UV light emission from the UCNP@mSiO2 under NIR light excitation triggered the cleavage of cap and intracellular release of calcium regulators, thereby allowing temporal regulation on the intracellular calcium levels. Application of NIR light through skin tissue promoted M1 or M2 polarization of macrophages, by elevating or depleting intracellular calcium levels, respectively. To the best of our knowledge, this is the first demonstration of NIR light-mediated remote control on macrophage polarization. This photoresponsive nanocarrier offers the potential to remotely manipulate in vivo immune functions, such as inflammation or tissue regeneration, via NIR light-controlled macrophage polarization.
» Author: Heemin Kang, Kunyu Zhang, Dexter Siu Hong Wong, Fengxuan Han, Bin Li, Liming Bian
» Reference: 10.1016/j.biomaterials.2018.03.007
» Publication Date: 21/04/2018
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es