In this section, you can access to the latest technical information related to the FUTURE project topic.

Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: A comparative investigation

Huge consumption of rigid polyurethane foam (RPUF) brings about two serious challenges for our society: fire hazards and environmental pollution. To address these issues, metal oxides and bimetallic oxides used for reducing smoke toxicity was successfully synthesized. The structures and morphologies were confirmed and thermogravimetric analysis indicated that incorporation of 2?wt% NiO conspicuously increased the residual yield of RPUF nanocomposites by 63.8% due to its catalytic coupling effect. Additionally, through the thorough analysis of volatile and condensed products, the smoke toxicity suppression mechanism in the pyrolysis and combustion of RPUF was investigated so as to find out the conversion of CO to CO2 through a redox cycle, involving the reduction of Ni+-Ni0 by CO and the oxidation of Ni0-Ni+ by O2. Among all the additives, nickel molybdate is the best catalyst which facilitates the migration of fuel-N in RPUF into the pollution-free gas in pyrolysis and combustion process.

» Author: Yao Yuan, Bin Yu, Yongqian Shi, Chao Ma, Lei Song, Weizhao Hu, Yuan Hu

» Reference: Composites Part A: Applied Science and Manufacturing, Volume 112

» Publication Date: 01/09/2018

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es