In this section, you can access to the latest technical information related to the FUTURE project topic.

Effect of Reynolds number on supercritical helium axial compressor rotors performance in closed Brayton cycle

Supercritical helium has been considered as an ideal working fluid in a number of design studies for closed Brayton cycle due to its thermal properties. But the low density level of supercritical helium, the characteristics of the small flow channel in the turbomachine and the variable working condition method of the system determine that the compressor may run at low Reynolds number. In this paper, the influence of Reynolds number on supercritical helium compressor rotor is investigated under different conditions by numerical simulation program. Effects of specific heat ratio on Reynolds number sensitivity of supercritical helium compressor rotor are also investigated by comparing the calculated results of different working fluids. Special attention is paid to the relationship between properties of working fluids and efficiency. Then, the equations of efficiency and total pressure ratio for different working fluids are established. The results show that the Reynolds number sensitivity of supercritical helium compressor rotor decreases with the increase of tip clearance and increases with the increase of the specific heat ratio.

» Author: Zhitao Tian, Qun Zheng, Bin Jiang

» Reference: Energy, Volume 145

» Publication Date: 15/02/2018

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es