In this section, you can access to the latest technical information related to the FUTURE project topic.

Public health risk assessment with bioaccessibility considerations for soil PAHs at oil refinery vicinity areas in India

Populations living in the vicinity of oil refinery sludge deposition sites may be at greater risk of potential exposure to polycyclic aromatic hydrocarbons (PAHs) through inhalation, ingestion, and direct contact with contaminated media. Three Indian oil refinery sludge deposition sites (at Haldia, Barauni and Guwahati) were chosen for study. Soil samples were collected from three different locations at each site. Mild solvent extraction by butanol and exhaustive extraction by acetone/hexane have been conducted to estimate the bioaccessible PAHs beside the total extractable PAHs content of the soil samples. Concentrations of 13 PAHs in the soils were found to be in a range of 67.02?95.21?g/g and bioaccessible PAHs were in a range of 19.296?36.657?g/g. A probabilistic health risk assessment with bioaccessibility considerations was carried out using Monte Carlo simulations for the estimation of the cancer risk exposed to the PAHs. The 90th percentiles cancer risks with bioaccessibility considerations of soil PAHs for children is 6.506E?05 and for the adults the risk is 6.609E?05. Risk assessments on extracted PAHs from exhaustive solvent extraction can overestimate the risk by 2.87?2.89 folds at 90% confidence level with respect to the biomimetic mild extraction procedure using butanol. According to USEPA above 1×10?6 extra risk of cancer is an alarm towards management. So, public health issues due to PAHs is imminent in these oil refinery vicinity areas. Sensitivity analysis revealed exposure duration (ED) and relative skin adherence factor for soil (AF) as the most influential parameters of the assessment. The profiling and risk assessment study with bioaccessibility considerations of PAHs from soil indicates that high PAHs concentration can lead to higher cancer risk for the vicinity area residents and local government should take immediate management actions.

» Author: Mohamed Aboelmaged

» Reference: Science of The Total Environment, Volumes 616?617

» Source: ScienceDirect - GPP

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es