In this section, you can access to the latest technical information related to the FUTURE project topic.

Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals

Microbiologically influenced corrosion (MIC) is prevalent in the oil and gas industry. Problematic biofilms cause MIC and reservoir souring. A high biocide concentration is usually required to mitigate biofilms compared with planktonic cells. This causes economic and environmental concerns. A biocide enhancer can make a biocide more effective using the same or lower biocide dosage. In this work, an equimolar mixture of 100 ppm (w/w) of four D-amino acids (D-methionine, D-tyrosine, D-tryptophan, and D-leucine) labeled as D-mix enhanced 100 ppm tetrakis (hydroxymethyl) phosphonium sulfate (THPS) against a field biofilm consortium on C1018 carbon steel coupons. In order to test chemical compatibilities, D-amino acids were added together with THPS and enhanced oil recovery chemicals (a polymer, a surfactant, a corrosion inhibitor, and a scale inhibitor) to treat the mature biofilm consortium. After a 7-day biofilm removal test in 125 ml anaerobic vials, the cocktail of 100 ppm THPS +100 ppm D-mix achieved extra logs of reduction in sessile cell counts compared with the 100 ppm THPS alone treatment. The combination also achieved lower weight loss and smaller maximum pit depths. Electrochemical tests corroborated the weight loss and pitting data.

» Author: Ru Jia, Dongqing Yang, Hasrizal Bin Abd Rahman, Tingyue Gu

» Reference: International Biodeterioration & Biodegradation, Volume 125

» Publication Date: 01/11/2017

» More Information

« Go to Technological Watch



AIMPLAS Instituto Tecnológico del Plástico

C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN

PHONE

(+34) 96 136 60 40

EMAIL

Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es