
AJUNTAMENT D'ALCOI
Website

Generalitat Valenciana
Website

Ayuntamiento de Valencia
Website

Cicloplast
Website

Ayuntamiento de Onil
Website

Anarpla
Website

Ayuntamiento de Mislata
Website

nlWA, North London Waste Authority
Website

Ayuntamiento de Salinas
Website

Zicla
Website

Fondazione Ecosistemi
Website

PEFC
Website

ALQUIENVAS
Website

DIPUTACI� DE VAL�NCIA
Website

AYUNTAMIENTO DE REQUENA
Website

UNIVERSIDAD DE ZARAGOZA
Website

OBSERVATORIO CONTRATACIÓN PÚBLICA
Website

AYUNTAMIENTO DE PAIPORTA
Website

AYUNTAMIENTO DE CUENCA
Website

BERL� S.A.
Website

CM PLASTIK
Website

TRANSFORMADORES INDUSTRIALES ECOL�GICOS

INDUSTRIAS AGAPITO
Website

RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
First-principles study of electronic properties of amine ligand-capped CsPbBr3 surface with organo-metallic alumina precursor treatment
Water and oxygen stability has been one of the major bottlenecks in practical application of perovskite quantum dots (PeQDs). Recently, ultra-thin alumina via atomic layer deposition (ALD) has been used as protective coating to improve the stability of PeQDs. However, the use of organo-metallic trimethylaluminum (TMA) precursor is typically accompanied by undesirable photoluminescence quenching of PeQDs. We investigate in detail the interaction mechanism between TMA and amine ligands-capped PeQDs to shed light on the origin of such quenching. First-principles calculations reveal that TMA is highly reactive to insert into amine ligands and PeQDs, which disrupts the bonding between ligand and the PeQDs surface. The demethylation of the insertion product would induce substantial trap states on the PeQDs surface, resulting in the degradation of photoluminescence. Methyl aluminum diisopropoxide (MADI) with asymmetric structure is proposed as an ALD precursor for the treatment of PeQDs. Due to the tight binding of the isopropyl groups to the Al atom, MADI can effectively avoid successive dissociation after reaction with surface ligands, avoiding the formation of trap states. This work highlights the importance of precursor engineering for ligand passivation and provides guidance to the design of precursors with minimal trap-states for highly efficient and stable PeQDs.

» Author: Zhaojie Wang, Zhang Liu, Kun Cao, Yanwei Wen, Rong Chen, Bin Shan
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es
