AJUNTAMENT D'ALCOI
Website
Generalitat Valenciana
Website
Ayuntamiento de Valencia
Website
Cicloplast
Website
Ayuntamiento de Onil
Website
Anarpla
Website
Ayuntamiento de Mislata
Website
nlWA, North London Waste Authority
Website
Ayuntamiento de Salinas
Website
Zicla
Website
Fondazione Ecosistemi
Website
PEFC
Website
ALQUIENVAS
Website
DIPUTACI� DE VAL�NCIA
Website
AYUNTAMIENTO DE REQUENA
Website
UNIVERSIDAD DE ZARAGOZA
Website
OBSERVATORIO CONTRATACIÓN PÚBLICA
Website
AYUNTAMIENTO DE PAIPORTA
Website
AYUNTAMIENTO DE CUENCA
Website
BERL� S.A.
Website
CM PLASTIK
Website
TRANSFORMADORES INDUSTRIALES ECOL�GICOS
INDUSTRIAS AGAPITO
Website
RUBI KANGURO
Website
If you want to support our LIFE project as a STAKEHOLDER, please contact with us: life-future-project@aimplas.es
In this section, you can access to the latest technical information related to the FUTURE project topic.
Influence of effective electrode coverage on the energy harvesting performance of piezoelectric cantilevers
Cantilevers are widely used for piezoelectric vibration energy harvesters (PEHs), thanks to the low resonance frequency and large mechanical strain under weak excitations. Electrode coverage optimization is essential for maximizing output power. In this study, bimorph cantilevers with segmented electrodes are developed to investigate the correlation between effective electrode coverage (EEC) and the harvesting behavior of piezoelectric cantilevers. A nonlinear electromechanical model is established using Hamilton's principle, numerically solved with the method of harmonic balance, and further validated by experimental measurements. Equivalent linear stiffness and equivalent mechanical damping ratio are firstly introduced for evaluating the equivalent effective electromechanical coupling coefficients and identifying strong and weak coupling harvesters. Both harvesters fabricated with and without proof mass behave mainly as strongly coupled systems and can obtain the maximum possible power at a very low EEC. Variation of EEC in higher range acquires almost constant maximum power on dramatically changing resistance. A comprehensive EEC design principle for acquiring the maximum output power is obtained for cantilevered PEHs. An optimal EEC obtaining the maximum effective electromechanical coupling coefficient is needed for acquiring the unique maximum power pick for weakly coupled harvesters, whereas a wide range of EEC can be used to maximize output power for harvesters those mainly behave as strongly coupled systems.
» Author: Kun Hu, Bin Zhou, Fei Wang, Zhengbao Yang, Min Wang
» Publication Date: 15/11/2021
C/ Gustave Eiffel, 4
(València Parc Tecnològic) - 46980
PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
Project Management department - Sustainability and Industrial Recovery
life-future-project@aimplas.es